Operating Systems
Lecture /

TLB and cache

Prof. Mengwel Xu

Recap: Address Translation

* From virtual memory address (KE$L PN 7FHLHE) to physical memory
address (YN 17 HE)

Virtual Address

(0x0000) . o Th
Processor | Translation [invalid > | oW an
exception
valid
Physical Address
(Oxfff)
Data ("hello”) v
Physical

Memory

Recap: Segmented Memory

« Segmentation with a segment table (43 B¥3%)

Segment Table

Processor
Virtual Address
| Segment Offset
(register) | (register)

Physical
Memory

Base Bound Permission
R
RW
RW
RW
| Physical Address

» Exception

Segment 4

Segment 3

Segment 2

Segment |

Recap: Paged Memory

* Paging (43 1): allocating memory in fixed-sized chunks called page
frames (Td HE)

* A page table (T %) stores for each process whose entries contain
pointers to the page frames.

- More compact than segment table because it does not need to store "bound”

* What's cool: the pages are scattered across physical memory regions
- Yet within a page, the memory access Is contiguous
- For instance, a large matrix might span many pages

* Memory allocation becomes very simple: find a page frame.

Recap: Paged Memory

Physical
Page Table Memory
Processor Frame Permission
Virtual Address R
RW
" Page # Offset
R
> RW
RW
Frame 3
Physical Address Frame 2
Frame Offset Frame |

Recap: x86 Multi-level Paging

CR3 Page ___-- » 4K size Physical

Processor \Directory N Memory
32 bits Page 4K
Table 4K

Virtual Address >
32 bits

: index | |index 2 | Offset 4K
(10 bits) | (10 bits) | (12 bits)

Page directory
number (T4 H

75 : :
Page table "
number (T1 %%5) Frame 3
rame
Physical Address Frame 2
Frame Offset Frame |
Page offset (20 bits) | (12 Pits)

(BT R %)

Recap: x86 Multi-level Paging

e Each page table entry (PTE, Td 33i) is 32-bits long.

31 |l 9 8 7 6 5 4 3 2 1 0

Avail P P
Page Frame Base Address (12-31) (9-11) G ,_?_\ D|A S

P R
W /| P
Y W

n~C

Available for system programmer’s use
Global page
Page Table Attribute Index
Dirty

Accessed
Cache disabled
Write-through
User/Supervisor
Read/WVrite
Present

Recap: x86 Multi-level Paging

* Memory management unit (MMU, 43 BT N 774 B BL.IT): the hardware
that actually does the translation
- Usually located in CPU

Virtual Physical
Addresses Addresses

Untranslated read or write

32
|1 32hitc |
@ l L 32 bits

10/18/24 Mengwei Xu @ BUPT 8

Recap: Multi-level Paging Summary

* Pros:
- Only need 1o allocate as many page table entries as we need for application
1 In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing
(1 Share at segment or page level (need additional reference counting)
* Cons:
- One pointer per page (typically 4K — [6K pages today)
- Page tables need to be contiguous
 However, previous example keeps tables to exactly one page in size
- Two (or more, if >2 levels) lookups per reference
1 Seems very expensive!

10/18/24 Mengwei Xu @ BUPT 9

Segments + Paging

 WWhat about a tree of tables?

- Lowest level page table = memory still allocated with britmap
- Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address: l

page #0 V,R

e a8 o [ERRoe: |
' \

Basel it Physical Address

Base3 | Limit3{ N

g:::g t:m:tg Check Permissions
Base6 | Limit6 | N ‘
Base/ | Limit7 |V > — ,Access Access

Error Error

10/18/24 Mengwei Xu @ BUPT 10

Segmentation vs. Paging

* Intel x86 and Linux
- 8086 era: segmentation and paging are both used

- 80386 era: the segmentation iIs not really used

[The processor provides 4 modes: none; paging only; segmentation only; both.
L The CS is always set to 0 and the limit is 2732,

- x86_64 era: segmentation Is considered as a legacy and not used in most OSes

* Now, everyone uses paging, few make any real use of segmentation.

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation

10/18/24 Mengwei Xu @ BUPT I

Copy-on-Write (COW)

* How to implement an efficient fork()!

- Do not copy all contents immediately, but mark the page/segment tables of both
child and parent processes as “‘read-only”

- When a write (from either child or parent) happens, it traps into kernel through
page fault, and a private page is copied.

* A fork() followed immediately by a exec(), how many pages are really
copled?

10/18/24 Mengwei Xu @ BUPT 12

Goals for Today

* Cache Concepts
* TLB

* Memory Cache

10/18/24 Mengwei Xu @ BUPT 13

Goals for Today

* Cache Concepts
* TLB

* Memory Cache

10/18/24 Mengwei Xu @ BUPT 14

Cache Concept

» Cache (Z&fF): a repository for copies that can be accessed more
quickly than the original

- One of the most widely adopted concept in computer systems: architecture, OS,
distributed systems, network routes, etc..

- Make frequent access fast!
- Only works with high “cache hit”

* Average Access [ime =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

;3‘.:‘0% : @ = =

G he —
A= 29
BE, pis
: no —
3: X ' / V=

(O ForeeT ol
/ = ©l'a = D) B

10/18/24 Mengwei Xu @ BUPT I5

10/18/24

Why Cache?

* Processing is often faster than |/O access

Processo-DRAM Memory Gap (latency)
LOOO | o

Performance

“ uProc

"Moore’s Law” 60%lyr.
(really Joy's Law) (2X/1.5yr)
IOO ... 'Pr‘bééssor-MemO")’

IO ‘.‘
Less Law!?” | . . -~ DRAM
R 9%l
| (2X/10 yrs)

Mengwei Xu @ BUPT

Locality: the Key to Cache Success

e Temporal locality (Ha])

Bk

2): If at one point a particular memory

location Is referenced, then it is likely that the same location will be
referenced again in the near future.
- To leverage: keep recently accessed data items closer to processor

e Spatial locality (ZX 6] Jp 5k ftE): if a particular storage location is
referenced at a particular time, then it is likely that nearby memory
locations will be referenced in the near future.

- Move contiguous blocks to the upper levels

Memory Hierarchy

* Speed, Size, and Cost: take advantage of each level

Processor
Control
Datapath
Speed (ns): s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms-Gs Gs-Ts Ts-Ps

10/18/24 Mengwei Xu @ BUPT 18

Memory Hierarchy

* Speed, Size, and Cost: take advantage of each level

* Direct use of caching techniques

- TLB (cache of PTEs)
Cache (cache of main memory, many levels)
Paged virtual memory (memory as cache for disk)
File systems (cache disk blocks in memory)
DNS (cache hostname => |P address translations)
VWeb proxies (cache recently accessed pages)

In this course:

‘— TLB »/ Cache [— Memory

10/18/24 Mengwei Xu @ BUPT 19

Goals for Today

* Cache Concepts
* TLB

* Memory Cache

10/18/24 Mengwei Xu @ BUPT 20

Address Translation Problem

* [t's too slow! Each memory access takes at least 2 extra memory access
- Memory speed is often slower than CPU

| | Virtual Address
- With more levels of translation..

Reserved

Low

\ 4

128 PB

512 entries
512GB 2 MB

256TB

1GB

Add

Page of physical memoryj,s5
4 kilobytes

Hello World

10/18/24 Mengwei Xu @ BUPT 21

TLB as a Cache

* Translation Lookaside Buffers (TLB, #5422 1 [X): a special cache
within MMU that accelerates address translation

Virtual Address Physical Address
* The time and spatial
- 2R
locality.Who are they! e Translation | |
* Memory mapping is page- |[mult ri, 2 | Oxo1234567
...... Xo3abcde

aligned.

10/18/24 Mengwei Xu @ BUPT

22

TLB Lookup

* A TLB lookup goes through each TLB entry
- TLB hits if any entry matches so the physical page is fetched directly

- TLB miss if none them matches. Do a full translation and use the physical
address to replace an old entry in TLB.

TLB entry ={
virtual page number,
physical page frame number,

access permissions

10/18/24 Mengwei Xu @ BUPT 23

TLB Lookup

Physical
* ATLB lookup goes through each TLB entry Memory
Virtual Address
Page # Offset]
Frame # Offset
TLB | Physical Address
Virtual Page Perm
Page # Frame #
o(—)
\Z/ >
o(—)
\Z
Frame 3
(=)
i Frame 2
~ Full address translation Frame |

®

~ through page table lookup

TLB Lookup

* A TLB lookup goes through each TLB entry

Virtual Virtual
Address Address Rai
Processor |----------- RITPRPPIR > TLB MiSS ----vevveeee- > Page Invalid ---------- 5 aise -
: Exception
Table
? Hit
: valid
Frame Frame
Offset é Physical
S ||| seeessescscscccccccscccccscccsccscccscns > (T >
: Memor
Physical y
: Address :
Data
5 Data

..

10/18/24 Mengwei Xu @ BUPT 25

TLB Lookup

* A TLB lookup goes through each TLB entry

* TLBs are often set-associative to reduce the comparison
- More In the cache courses

10/18/24 Mengwei Xu @ BUPT 26

TLB Lookup

* A TLB lookup goes through each TLB entry
* TLBs are often set-associative to reduce the comparison

* Address translation cost with TLB
- High TLB hit ratio is critical to translation performance

Cost(address translation) = Cost(TLB Lookup) +
Cost(full translation) x P(miss)

10/18/24 Mengwei Xu @ BUPT 27

TLB Miss

* Sources
- Page not accessed before
- Page evicted due to limrited TLB size
- Page mapping conflict due to association
- Other processes update the page table

10/18/24 Mengwei Xu @ BUPT 28

TLB Miss

* (Mostly) Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk
multiple levels)

O If PTE valid, hardware fills TLB and processor never knows

O If PTE marked as invalid, causes Page Fault, after which kernel decides what
to do afterwards

* Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault

- Kernel traverses page table to find PTE
A If PTE valid, fills TLB and returns from fault
O If PTE marked as invalid, internally calls Page Fault handler

10/18/24 Mengwei Xu @ BUPT 29

TLB performance

* Key metric: hit ratio
* Two techniques to increase TLB hit ratio: superpage and prefetching

* Typical numbersl']
- Size: 12 bits — 4,096 entries

- Hit time: 0.5 — | clock cycle
- Miss penalty: 10 — 100 clock cycles
- Miss rate: 0.01 — 196 (20—40% for sparse/graph applications)

Cost(address translation) = Cost(TLB Lookup) +
Cost(full translation) x P(miss)

[1] David A. Patterson; John L. Hennessy (2009). Computer Organization And Design. Hardware/Software interface.
4th edition. Burlington, MA 01803, USA: Morgan Kaufmann Publishers. p. 503.

10/18/24 Mengwei Xu @ BUPT 30

TLB performance

* Key metric: hit ratio
* Two techniques to increase TLB hit ratio: superpage and prefetching

* Typical numbers
- Size: |2 bits — 4,096 entries
- Hit time: 0.5 — | clock cycle
- Miss penalty: 10 — 100 clock cycles
- Miss rate: 0.01 — 196 (20—40% for sparse/graph applications)

 [f a TLB hit takes | clock cycle, a miss takes 30 clock cycles, a memory
read takes 30 clock cycles, and the miss rate is |9, what's the average
memory access time?

10/18/24 Mengwei Xu @ BUPT 31

TLB performance: Superpage

* Superpage: a set of contiguous pages In physical memory that map a
contiguous regions of virtual memory, where the pages are aligned so
that they share the same high-order (superpage) address

- A way 1o increase the TLB cache hit ratio.
- What is sacrificed?

* Matching superpages only comparing the most significant bits of the
address, ignoring the offset within the superpage.
- For a 2MB superpage, the offset Is the lowest 21 bits in virtual address
- Fora | GB superpage, the offset Iis the lowest 30 bits in virtual address
- For those superpages, x86 skips one or two levels of the page table

* There is only one TLB entry for all the pages within the same superpage

TLB performance: Superpage

Physical
Memory

Virtual Address
Page # Offset

Frame # Offset

TLB | Physical Address

Virtual Page Perm

Page # Frame#
o(—)
\Z/
o=
Z/

Frame 3

(=)
< Frame 2
:@ , Full address translation Frame |

through page table lookup

10/18/24 Mengwei Xu @ BUPT 33

TLB performance: TLB prefetching

* Prefetching page table entries into TLB before it's actually used

* Various ways to prefetch
|, Sequential Prefetching: spatial locality
2. Strided Prefetching: usually for array-based computation
3. Correlated Prefetching: exploiting the history of access patterns
- Software-based vs. Hardware-based

* The effectiveness of CPU prefetching is closely tied to the CPU pipeline
- Think about CPU instruction prefetching

.) (3 (M) (A) (W)
Instruction #1 Fetch Execute Memory Align Writeback
. (1 (3 (M) (A) (W)
Instruction #2 Fetch Execute Memory Align Writeback
. (1 (3 (M) (A) (W)
Instruction #3 Fetch Execute Memory Align Writeback
. (1 (3 (M) (A) (W)
Instruction #4 Fetch Execute Memory Align Writeback
. (1 (3 (M)
Instruction #5 Fetch Execute Memory

(A) (W)
Align Writeback

10/18/24 Mengwei Xu @ BUPT Time 34

>
Ll

10/18/24

Memory Performance

Cache Type What is Cached? | Whereis it Cached? | Latency (cycles) | Managed By

Registers 4-8 byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Mengwei Xu @ BUPT

35

TLB Consistency

 Consistency (—Z¢:) is a common issue for each cache: the cache
must be always the same as the original data whenever the entries are
modified.
- Process context switch

- Permission reduction
- TLB shootdown

10/18/24 Mengwei Xu @ BUPT 36

TLB Consistency

* Process Context Switch

- Straightforward way: always flush the TLB when there Is a context switch
- Modern way: tagged TLB

Process Virtual Page

P
ID Page # Frame # =
TLB entry = { @ ® Py
Process ID, @
® ®

virtual page number,
physical page frame number,
access permissions

TLB Consistency

* Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the whole TLB; modern ones support the removal of
individual TLB entries L e e
10 {

- If the pages are shared by processes..

111 asm ("invlpg (%0@)" : : "r" (addr) : "memory");

12 }

10
]
|

10/18/24 Mengwei Xu @ BUPT 38

TLB Consistency

* Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the whole TLB; modern ones support the removal of
individual TLB entries L e e

- If the pages are shared by processes..

10

li‘.,

111 asm volatile("invlpg (%0)" : : "r" (addr) : "memory");
11

* There Is nothing to be done with perission addition (e.g., heap/stack
extended, read-only to read-write). Why!

10/18/24 Mengwei Xu @ BUPT 39

TLB Consistency

* Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the whole TLB; modern ones support the removal of
. v ' 8 static inline void
individual TLB entries 109 invipglvoid %addr)
110 {
- |f‘the pages are Shar’ed b>/ pr‘ocesses 1:1.1 asm volatile("invlpg (%0)" : : "r" (addr) : "memory");
112 }

* There is nothing to be done with permission addition (e.g., heap/stack
extended, read-only to read-write). Why!

e Can we do it In hardware instead of software!?

- The processor does not track the address where the mapping came from, so it
cannot tell If a write to memory would affect a TLB entry

- Even if it can, repeatedly checking each memory store to see If it affects any TLB
entry IS unnecessary

10/18/24 Mengwei Xu @ BUPT 40

TLB Consistency

* TLB shootdown (#;¥%%): on a multiprocessor, any processor changing
their page table (and thus its TLB) needs to flush other processors TLBs
as well.

- Multi-thread scenarios
- Typically done through inter-processor interrupts

10/18/24 Mengwei Xu @ BUPT 41

TLB Consistency

* LB shootdown: on a multiprocessor; any processor changing their page
table (and thus its TLB) needs to flush other processors' TLBs as well.

* The process
- OS first modifies the page table
- It sends a TLB flush request to all processors
- Any processor that finishes its TLB update can resume

- The oniginal processor can resume only when all of the processors have
acknowledged removing the old entry from their TLB.VWhy!

10/18/24 Mengwei Xu @ BUPT 42

TLB Consistency

* LB shootdown: on a multiprocessor; any processor changing their page
table (and thus its TLB) needs to flush other processors' TLBs as well.

* The process
- OS first modifies the page table
- It sends a TLB flush request to all processors
- Any processor that finishes its TLB update can resume

- The oniginal processor can resume only when all of the processors have
acknowledged removing the old entry from their TLB.VWhy?

* High cost of TLB shootdown: linearly increases with core number
- Optimization: batch the shootdown requests

RESEARCH-ARTICLE .? 4 ih @ f
Don't shoot down TLB shootdowns!

Authors: Q Nadav Amit, Amy Tai, Michael Wei Authors Info & Claims

EuroSys '20: Proceedings of the Fifteenth European Conference on Computer Systems « April 2020 « Article No.: 35 « Pages 1

10/18/24 14 « https://doi.org/10.1145/3342195.3387518 43

TLB Consistency

* |f the initial CPU does not walt for the acknowledgement..

l.
2.
3.
4. .
5. .
6. .
7.

CPU #1 marks page A as read-only
CPU #1| proceeds without waiting
CPU #1 reads data from page A

CPU #1 reads data from page A

|. CPU #2 is handling other interrupts
2. .

3. .

4. CPU #2 writes data to page A

5. CPU #2 handles shootdown and

marks page A and read-only

Consequence: CPU #1 reads data from read-only page A
for two times, but the returned data are different!

10/18/24

Mengwei Xu @ BUPT

44

Goals for Today

* Cache Concepts
* TLB

* Memory Cache

10/18/24 Mengwei Xu @ BUPT 45

Memory Cache

* Fill the speed gap of CPU and DRAM memory

TLB —| Cache }—* Memory

L}

10/18/24 Mengwei Xu @ BUPT 46

Memory Cache

* Block (#t) is the minimal unit of caching
- Often larger than | word/byte to exploit the spatial locality
- Shall not be neither too large or too small. Why!?
- Modern Intel processors use 64B

* Address fields for cache lookup

Block Address Block
Tag Index offset
Set Select

Data Select

10/18/24 Mengwei Xu @ BUPT 47

Cache Lookup

e Fully associative (&R 5821 BK): each
address can be stored anywhere in the cache Cache Cache
table Tag Data Valid

* Direct mapped (EL{ZML5}): each address can
be stored In one location In the cache table

* N-way set associative (N&2H 3 Bk): each
address can be stored in one of N cache sets

7

!

Cache Miss

I

" Tradeoffs: lookup speed and cache hit rate

Fully Associative

* Compare the cache tag on each cache line

* Example: Block Size=32B blocks
- We need Nx 2/-bit comparators

31 4 0
Cache Tag (27 bits long) Byte Select (5 bits)
Ex: 0x01
| Cache Tag Cache Data \ Valid Bit

—>@<— Byte 31| °° |Byte1l | Byte 0

2

) Byte 63| ** | Byte 33| Byte 32
3@.

i‘OA

'1‘@4

Fully Associative

* Compare the cache tag on each cache line

* Example: Block Size=32B blocks
- We need Nx 2/-bit comparators

* The drawback: performance degrades with larger cache, because there
are more tags to be compared.

- Solution # |: using larger block, but..

10/18/24 Mengwei Xu @ BUPT 50

Direct Mapped

* Map to one specific cache line through a Hash function.

* Verify the address.

A\ 4

Address Hash

Cache

Tag Data

[
»

» Cache Hit

:?

Cache Miss

10/18/24 Mengwei Xu @ BUPT 51

Direct Mapped

* Example: | KB Direct Mapped Cache with 32B Blocks

- Index chooses potential block

- Tag checked to verify block Hash(x) = addr & I111100000
- Byte select chooses byte within block
31 10 9 54 0
Cache Tag Cache Index | Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
1 |
Cache Tag Cache Data Valid Bit
0 Byte 31}...°°. | Byte 1 ByieO |
e | 0x50 Byte 63| °* | Byte 33| Byte 32
2
3
31

Byte 1023 °° Byte 992

Direct Mapped

* Example: | KB Direct Mapped Cache with 32B Blocks

- Index chooses potential block

- Tag checked to verify block
- Byte select chooses byte within block

) 109 _ _ ____ 34 _ ____ 01
Cache Tag Cache Index | Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
t |
Cache Tag Cache Data Valid Bit
0 Byte 31}...°°. | Byte 1 By*} 0 |
e | 0x50 Byte 63| °* | Byte 33| Byte 32
2
3
31 Byte 1023 °°

Byte 992

How those numbers

Direct Mapped

* Example: | KB Direct Mapped Cache with 32B Blocks

- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

* The drawback: low flexibility
- Thrash (BliR): frequently using two addresses that map to the same cache entry,

A Thrashing

Optimal

Improving
Throughput

CPU Utilization

Degree of Multiprogramming

10/18/24 Mengwei Xu @ BUPT 54

Set Associative

* N-way Set Associative: N entries per Cache Index
- N direct mapped caches operates in parallel

Address

\ 4

Hash

Tag

Data

o
>

©

Cache Miss

Cache Hit

——

Tag

Data

o
L

o
»

:

Cache Miss

Cache Hit

Set

Associative

* Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

Cache Tag Valid

31 8 4 0
Cache Tag Cache Index Byte Select
|
Valid Cache Tag Cache Data Cache Data
Cache Block 0 Cache Block 0

I
1 A set

r— ==

Cache Block

Set Associative

* Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel

: are determined?
- Data s selected based on the tag result /
M8 4 ____ 0.
Cache Tag Cache Index Byte Select
J
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
g i il itttk & el I [B S d -1
| < > 1 A set
L e e - F - e e e e e Y/ LYY/ Y//—/——/——/——— = = |
I [

)&sm ‘lrl—Mux 0 Selo £ (

Cache Block
10/18/24 Mengwei Xu @ BUPT 57

Set Associative

* Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

* N-way set associative is a mix of direct mapped and fully associative
- When n = It becomes directed mapped
- When n = It becomes fully associative

31 8 4 0
Cache Tag Cache Index Byte Select

10/18/24 Mengwei Xu @ BUPT 58

Set Associative

* Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

* N-way set associative is a mix of direct mapped and fully associative
- When n = It becomes directed mapped
- When n = It becomes fully associative

* Why use the lower bits for index, higher bits for tag?

31 8 4 0
Cache Tag Cache Index Byte Select

10/18/24 Mengwei Xu @ BUPT 59

Where does a Block Get Placed in a Cache?

* Example: Block 12 placed in 8 block cache??

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901
Direct mapped: Set associative: Fully associative:
?? ?? ??
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
0 1 2 3

10/18/24 Mengwei Xu @ BUPT 60

Where does a Block Get Placed in a Cache?

* Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
No. 01234567890123456789012345678901
Direct mapped: Set associative: Fully associative:
block 12 can go block 12 can go block 12 can go
only into block 4 anywhere in set 0 anywhere
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3

6l

10/18/24 Mengwei Xu @ BUPT

Cache Replacement

* Direct mapped: only one possibility

* Set or fully associative
- Random: sometimes simple is good; no extra overhead.

10/18/24 Mengwei Xu @ BUPT 62

Cache Replacement

* Direct mapped: only one possibility

* Set or fully associative
- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads

FIFO
Access | a b C d e a b C d e a b C d e
Block | | a e d c
Block 2 b a e d
Block 3 C b a e
Block 4 d C b

10/18/24 Mengwei Xu @ BUPT 63

10/18/24

Cache Replacement

* Direct mapped: only one possibility

* Set or fully associative
- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history

LRU
Access C b d a d e d a e b
Block | v v
Block 2 v v
Block 3 C e v
Block 4 d v v

Mengwei Xu @ BUPT

64

Cache Replacement

* Direct mapped: only one possibility

* Set or fully associative
- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history
- Least Frequently Used (LFU)

10/18/24 Mengwei Xu @ BUPT 65

Cache Write Policies

* Write through: The information is written to both cache and memory
- PRO: read misses cannot result in writes
- CON: Processor is blocked on writes unless writes buffered

* Write back: The information Is written only to cache
- Modified cache block is written to main memory only when it is replaced
- Question is block clean or dirty?

- PRO: repeated writes not sent to DRAM; processor is not blocked
on Writes

- CON: More complex; read miss may require writeback of dirty data;
need a dirty bit to mark whether a block has been modified

10/18/24 Mengwei Xu @ BUPT 66

Addressed Virtually or Physically?

* The cache is addressed through virtual or physical address?
- Note there are many levels of cache

31 8 4 0
Cache Tag Cache Index Byte Select
Virtual 2nd- 3rd- .
address | MMU & 1st- level level Main Memory
— | level " cache " cache >
TLB
cache

Addressed Virtually or Physically?

* The cache is addressed through virtual or physical address?
- Note there are many levels of cache

* Every address access after MMU is physical

- The TLB miss cost is very high

- Overlapping TLB and |s-level cache as they are both in CPU

Virtual
address | MMU & 1st-
— level
TLB
cache

2nd-
level

* cache

3rd-
level
cache

Main Memory

Overlapping TLB and Cache

* Key idea:
- Offset In virtual address exactly covers the “cache index’” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation

virtual address [Virtual Page#[Offsee ™
physical address [tag/page # [lindex | byte |

10/18/24 Mengwei Xu @ BUPT 69

Overlapping TLB and Cache

* Key idea:
- Offset In virtual address exactly covers the “cache index’” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation

assoc
lookup

3 |TLB « ‘ ‘ index | K

4K Cache

v

20 10 2 4 bytes —* |
virtual page #| disp |00

Hit/ |
Miss V\ /
page # @ 'Il::lg Data Hit/

! l +v Miss

Overlapping TLB and Cache

* Key idea:
- Offset In virtual address exactly covers the “cache index’” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation
- “Virtually indexed, physically tagged” (VIPT)

* Another option: virtually indexed, virtually tagged (VIVT)
- Tags In cache are virtual addresses

- Translation only happens on cache misses
- What's the problems!?

* LI is mostly VIPT, L2/L3 are mostly PIPT

10/18/24 Mengwei Xu @ BUPT 71

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
Page TablePtr PhYsical 2SS
Page Table mm :::
Page Table
(2d level)

Putting Everything Together: TLB

Physical
Virtual Address: Memory:

Physical ess:

ysica
Page #

TLB:

Putting Everything Together: Cache

Physical
Memory:

Physical ess:

Ysica
Page #

Detailed Page Fault Process

Before Page Fault (done by hardware)

Process executes a memory
load or store instruction, or
fetches an instruction

\ 4

\ 4

The address is first feed to
cache or instruction prefetch
buffer, if it is there, done;

\ 4

If it is not there, the address is
feed to TLB, to try to find a

page translation entry for it
(note that the address is virtual

address);

If hit in TLB, check for R/VW/E permissions.

\ 4

If not approved,
page fault!

If approved, take the physical page number,
concatenate it with the page offset, and send the
address to memory bus;

A 4

If miss in TLB, MMU tries to find page table entry;

\ 4

If page table entry found, the entry is put to TLB ---
some entry has to be replaced out of TLB, hardware-
decided replacement, random replacement;

If MMU can‘t find
page table entry or
permission not
satisfied, page fault!

Detailed Page Fault Process

Handling Page Fault (done by hardware)

What kind of fault is it?

v v v
R/WI/E permission denied: terminate | | address not in the ranges of addresses that are else, a legitimate page fault
program and generate core-dump allowed to be referenced by the program: (let's say the virtual page
file, or send a signal to the program terminate program and generate core-dump files that is to be faulted in is U)

\ 4

First find a physical page
for it, say page P

Initialize the content of P

N
Set all bytes |_—
After the interrupt processing, After P is initialized, change in P to zero
the process will retry the the page table entry for U 1Y
instruction that was not to be U-->P,. and set the Read U-from-disk{(during-this-timerthe
finished due to the page fault entry to be valid & clean; process-is-blocked,and-the CPU scheduler
putssome-otherprocess-torun-on-CPU)

Page Coloring

* Page Coloring or Cache Coloring (F54,) technique helps reduce the
cache miss In an app

63 Il 0

Page No. Page Offset

2]

Consider two consecutive pages used by an application:

* Their virtual set number must be different

* But their physical set number could be the same after translation (when the OS maps them to the
physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

10/18/24 Mengwei Xu @ BUPT 77

Page Coloring

* Page Coloring or Cache Coloring (F54,) technique helps reduce the

cache miss In an app T
63 : I : I O Cache Page Color A
: Way-1 Way-2 Way-n
Page No. : Page Offset
1 Page Color B
[i 1
"2 — || |
Page Color A
Consider two consecutive pages used by an application: Page Color B

* Their virtual set number must be different

* But their physical set number could be the same after translation (when the OS maps them to the
physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

Solutions

* Coloring the physical pages with the cache sets

* Maps the application pages to as many colors as possible (so less contention)

10/18/24 Mengwei Xu @ BUPT 78

Page Coloring

* Page Coloring or Cache Coloring (F54,) technique helps reduce the
cache miss In an app

* Page coloring only works for L2/L3 cache but not LI, why?

* Page coloring does not work for full-associative cache, why!

10/18/24 Mengwei Xu @ BUPT 79

10/18/24 1w

Making Cache Better Utilized

- Could change at different phases

- Better fit them into fast storage, e.g,, first-level cache.

Page Faults vs Working Set Size

10 ;
fault rate
throughput

8

Q -
T 6

5

N

& 4

(4]

o

2 _

0 1 1 1

20 40 60 80 100 120

% (allocated/working set)

Mengwei Xu @ BUPT

1 14

112

1 0.8

1 0.6

1 0.4

1 0.2

« Working Set (TAE42): the memory needed by a program at a period

throughput

80

Making Cache Better Utilized

« Working Set (TAE42): the memory needed by a program at a period
- Could change at different phases
- Better fit them into fast storage, e.g,, first-level cache.

* [t's important to design algorithms to adapt the working set to the
memory hierarchy

- Think of sorting a large array
- Think of matrix multiplication (homework)

10/18/24 1w Mengwei Xu @ BUPT 8l

Making Cache Better Utilized

« Zipf model (GFi% FBLH): the frequency of visit to the k-th most

1 .
popular page & —, where a Is a value between | and 2.
ka

- Heavy tail: a substantial portion of references will be to less popular ones

P access(rank) = |/rank
20%

— I

2 \ g
§ IS% B 08 %
2 10% —)
> \ —pop a=| - 04 S
5 5% /0 . gy E
= \ Hit Rate(cache) A
o L
no_ O% rrrrrrr1r1r 1T 1r 1 T1rTrrrrrrrrrrrTrrTrrr T T T T T T T T T T T T T T T T T T T O

| 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Rank

10/18/24 1w Mengwei Xu @ BUPT 82

Split L1 Cache

e || cache often has two cache hardware: icache and dcache
- Asynchronous data fetching

- Instruction and data have different patterns, e.g., instruction is rarely written. So
they can better optimized separately

- Tradeoffs between cache performance, hardware complexity, etc..

e | 7 and L3 are often one unified cache
- Why!

10/18/24 Mengwei Xu @ BUPT 83

Cache Summary

* Cache speeds up OS

- TLB (cache of PTEs)
Paged virtual memory (memory as cache for disk)
File systems (cache disk blocks in memory)
DNS (cache hostname => |P address translations)
VWeb proxies (cache recently accessed pages)

* Cache complicates OS
- kg, TLB consistency

10/18/24 Mengwei Xu @ BUPT

84

10/18/24

Memory Performance

Cache Type What is Cached? | Whereis it Cached? | Latency (cycles) | Managed By

Registers 4-8 byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Mengwei Xu @ BUPT

85

Memory Performance

Latency Comparison Numbers (~2012)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSDx* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSDx 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands—>CA 150,000,000 ns 150,000 us 150 ms

Latency Numbers Every

10~-9 seconds

1 us = 10™-6 seconds 1,000 ns

1 ms 10~-3 seconds 1,000 us = 1,000,000 ns Programmer ShOUld Know
Credit T e
By Jeff Dean: http://research.google.com/people/jeff/

Originally by Peter Norvig: http://norvig.com/21-days.html#answers

Contributions

'Humanized' comparison: https://gist.github.com/hellerbarde/2843375
Visual comparison chart: http://i.imgur.com/k0@tle.png

10/18/24 Mengwei Xu @ BUPT 86

Easy Lab 2 - Matrix Multiplication

* Making it as fast as possible
- Multrthread
- More cache hit
- (optional) single instruction, multiple data

* Scored based on how It performs on our testing hardware

* Details: https://buptos.github.io/homework.htmli

10/18/24 Mengwei Xu @ BUPT 87

Exercise-=0

* Describe what 1s TLB shootdown, why we need it. Then search and
discuss at least one optimization on TLB shootdown performance.

10/18/24 Mengwei Xu @ BUPT 88

Exercise-1

Suppose a cache divides addresses as follows:
4 bits 3 bits

tag index byte offset

Fill in the values for a direct-mapped or 4-way associative cache:

Direct-mapped 4-way associative

Block size

Number of blocks

Total size of cache
(e.g. 32 * 128 — don’t
have to multiply out)

Tag size (# bits)

10/18/24 Mengwei Xu @ BUPT 89

Exercise=2

1. Suppose cache has:
— 4 byte blocks
— 128 blocks
Show how to break the following address into the tag, index, & byte offset.

0000 1000 0101 1100 0001 0001 0111 1001

2. Same cache, but now 8-way associative. How does this change things?

0000 1000 0101 1100 0001 0001 0111 1001

10/18/24 Mengwei Xu @ BUPT 90

Exercise-3

« Given a cache that is:
— 4-way associative
— 32 blocks
— 16 byte block size
What is the cache index and byte offset for the following address:

0x3abl2395

Cache index =
Byte offset =

And this one:

0x70££1213

Cache index =
Byte offset =

Do these addresses conflict in the cache?

10/18/24 Mengwei Xu @ BUPT 91

10/18/24

Exercise-4

Suppose a 32-bit address is divided up as follows for caching:

6 bits — byte offset
5 bits — index
21 bits - tag

Fill in the following table for the two given types of caches

Direct-mapped

2-way associative

Block size

Number of blocks

Total cache size

Mengwei Xu @ BUPT

92

Exercise=5

Suppose a direct-mapped cache has 16 byte blocks and a total of 128
blocks (N=128). The machine has 64 bit addresses.

1. How many address bits are used for the byte offset?

2. How many address bits are used for the index?

3. How many address bits are used for the tag?

Now suppose the cache is 4-way set associative. Answer again:
1. How many address bits are used for the byte offset?

2. How many address bits are used for the index?

3. How many address bits are used for the tag?

10/18/24 Mengwei Xu @ BUPT 93

