
Operating Systems
Lecture 7

TLB and cache

Prof. Mengwei Xu

10/18/24 Mengwei Xu @ BUPT 2

• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)

Recap: Address Translation

Processor Translation

Virtual Address
(0x0000)

invalid Throw an
exception

Physical
Memory

valid

Physical Address
(0xffff)

Data (”hello”)

10/18/24 Mengwei Xu @ BUPT 3

• Segmentation with a segment table (分段表)

Recap: Segmented Memory

Segment 1

Processor
Virtual Address

+

> Exception

Physical Address

Segment
(register)

Offset
(register)

RW
R

RW
RW

Base Bound Permission
SegmentTable

Segment 2

Segment 3

Segment 4

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 4

• Paging (分页): allocating memory in fixed-sized chunks called page
frames (页框)
• A page table (页表) stores for each process whose entries contain

pointers to the page frames.
- More compact than segment table because it does not need to store ”bound”

• What’s cool: the pages are scattered across physical memory regions
- Yet within a page, the memory access is contiguous
- For instance, a large matrix might span many pages

• Memory allocation becomes very simple: find a page frame.

Recap: Paged Memory

10/18/24 Mengwei Xu @ BUPT 5

Recap: Paged Memory

Processor
Virtual Address

Physical Address

Page # Offset
RW
R

R

Frame Permission

PageTable

Frame 1

RW
RW

Frame 2

Frame 3

..

Frame Offset

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 6

Recap: x86 Multi-level Paging

Processor

Virtual Address

Physical Address

index 1
(10 bits)

Offset
(12 bits)

Page
Directory

Frame 1

32 bits

Frame 2

Frame 3

..

..
4K
4K
4K

Frame
(20 bits)

Offset
(12 bits)

Physical
Memory

index 2
(10 bits)

Page
Table
32 bits

Page directory
number (页目
录号)

Page table
number (页表号)

Page offset
(页内偏移)

4K sizeCR3

10/18/24 Mengwei Xu @ BUPT 7

• Each page table entry (PTE,页表项) is 32-bits long.

Recap: x86 Multi-level Paging

P
R
/
W

U
/
S

P
W
Y

P
C
D

AD
P
A
T

GAvail
(9-11)Page Frame Base Address (12-31)

01234567891131

Available for system programmer’s use
Global page
Page Table Attribute Index
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

10/18/24 Mengwei Xu @ BUPT 8

• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation

- Usually located in CPU

Recap: x86 Multi-level Paging

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

32 bits
32 bits
32 bits
32 bits

R

WOS

10/18/24 Mengwei Xu @ BUPT 9

• Pros:
- Only need to allocate as many page table entries as we need for application

q In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing

q Share at segment or page level (need additional reference counting)
• Cons:

- One pointer per page (typically 4K – 16K pages today)
- Page tables need to be contiguous

q However, previous example keeps tables to exactly one page in size
- Two (or more, if >2 levels) lookups per reference

q Seems very expensive!

Recap: Multi-level Paging Summary

10/18/24 Mengwei Xu @ BUPT 10

• What about a tree of tables?
- Lowest level page table Þ memory still allocated with bitmap
- Higher levels often segmented

• Could have any number of levels. Example (top segment):

Segments + Paging

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

10/18/24 Mengwei Xu @ BUPT 11

• Intel x86 and Linux
- 8086 era: segmentation and paging are both used
- 80386 era: the segmentation is not really used

qThe processor provides 4 modes: none; paging only; segmentation only; both.
qThe CS is always set to 0 and the limit is 2^32.

- x86_64 era: segmentation is considered as a legacy and not used in most OSes

• Now, everyone uses paging, few make any real use of segmentation.

Segmentation vs. Paging

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation

10/18/24 Mengwei Xu @ BUPT 12

• How to implement an efficient fork()?
- Do not copy all contents immediately, but mark the page/segment tables of both

child and parent processes as “read-only”
- When a write (from either child or parent) happens, it traps into kernel through

page fault, and a private page is copied.

• A fork() followed immediately by a exec(), how many pages are really
copied?

Copy-on-Write (COW)

10/18/24 Mengwei Xu @ BUPT 13

• Cache Concepts
• TLB
• Memory Cache

Goals for Today

10/18/24 Mengwei Xu @ BUPT 14

• Cache Concepts
• TLB
• Memory Cache

Goals for Today

10/18/24 Mengwei Xu @ BUPT 15

• Cache (缓存): a repository for copies that can be accessed more
quickly than the original

- One of the most widely adopted concept in computer systems: architecture, OS,
distributed systems, network routes, etc..

- Make frequent access fast!
- Only works with high “cache hit”

• Average AccessTime =
(Hit Rate x HitTime) + (Miss Rate x MissTime)

Cache Concept

10/18/24 Mengwei Xu @ BUPT 16

• Processing is often faster than I/O access

Why Cache?

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

DRAM

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf
or
m
an
ce

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

“Less’ Law?”

10/18/24 Mengwei Xu @ BUPT 17

• Temporal locality (时间局部性): If at one point a particular memory
location is referenced, then it is likely that the same location will be
referenced again in the near future.

- To leverage: keep recently accessed data items closer to processor
• Spatial locality (空间局部性): if a particular storage location is

referenced at a particular time, then it is likely that nearby memory
locations will be referenced in the near future.

- Move contiguous blocks to the upper levels

Locality: the Key to Cache Success

10/18/24 Mengwei Xu @ BUPT 18

• Speed, Size, and Cost: take advantage of each level

Memory Hierarchy

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts-Ps

10/18/24 Mengwei Xu @ BUPT 19

• Speed, Size, and Cost: take advantage of each level
• Direct use of caching techniques

- TLB (cache of PTEs)
- Cache (cache of main memory, many levels)
- Paged virtual memory (memory as cache for disk)
- File systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)

Memory Hierarchy

CPU TLB Cache Memory

In this course:

10/18/24 Mengwei Xu @ BUPT 20

• Cache Concepts
• TLB
• Memory Cache

Goals for Today

10/18/24 Mengwei Xu @ BUPT 21

• It’s too slow! Each memory access takes at least 2 extra memory access
- Memory speed is often slower than CPU
- With more levels of translation..

Address Translation Problem

10/18/24 Mengwei Xu @ BUPT 22

• Translation Lookaside Buffers (TLB,转换检测缓冲区): a special cache
within MMU that accelerates address translation

TLB as a Cache

……
add r1,r2
mult r1, 2
……

Virtual Address

……
0x01234567
0x89abcdef
……

Physical Address

Translation

• The time and spatial
locality.Who are they?

• Memory mapping is page-
aligned.

10/18/24 Mengwei Xu @ BUPT 23

• ATLB lookup goes through eachTLB entry
- TLB hits if any entry matches so the physical page is fetched directly
- TLB miss if none them matches. Do a full translation and use the physical

address to replace an old entry inTLB.

TLB entry = {
 virtual page number,
 physical page frame number,
 access permissions
}

TLB Lookup

10/18/24 Mengwei Xu @ BUPT 24

• ATLB lookup goes through eachTLB entry

TLB Lookup

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

= Full address translation
through page table lookup

Frame 1

Frame 2

Frame 3

..

Physical
Memory

10/18/24 Mengwei Xu @ BUPT 25

• ATLB lookup goes through eachTLB entry

TLB Lookup

10/18/24 Mengwei Xu @ BUPT 26

• ATLB lookup goes through eachTLB entry
• TLBs are often set-associative to reduce the comparison

- More in the cache courses

TLB Lookup

10/18/24 Mengwei Xu @ BUPT 27

• ATLB lookup goes through eachTLB entry
• TLBs are often set-associative to reduce the comparison
• Address translation cost withTLB

- HighTLB hit ratio is critical to translation performance

TLB Lookup

Cost(address translation) = Cost(TLB Lookup) +
 Cost(full translation) x P(miss)

10/18/24 Mengwei Xu @ BUPT 28

• Sources
- Page not accessed before
- Page evicted due to limitedTLB size
- Page mapping conflict due to association
- Other processes update the page table

TLB Miss

10/18/24 Mengwei Xu @ BUPT 29

• (Mostly) Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk

multiple levels)
q If PTE valid, hardware fills TLB and processor never knows
q If PTE marked as invalid, causes Page Fault, after which kernel decides what

to do afterwards

• Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE

q If PTE valid, fills TLB and returns from fault
q If PTE marked as invalid, internally calls Page Fault handler

TLB Miss

10/18/24 Mengwei Xu @ BUPT 30

• Key metric: hit ratio
• Two techniques to increaseTLB hit ratio: superpage and prefetching
• Typical numbers[1]

- Size: 12 bits – 4,096 entries
- Hit time: 0.5 – 1 clock cycle
- Miss penalty: 10 – 100 clock cycles
- Miss rate: 0.01 – 1% (20–40% for sparse/graph applications)

TLB performance

Cost(address translation) = Cost(TLB Lookup) +
 Cost(full translation) x P(miss)

[1] David A. Patterson; John L. Hennessy (2009). Computer Organization And Design. Hardware/Software interface.
4th edition. Burlington, MA 01803, USA: Morgan Kaufmann Publishers. p. 503.

10/18/24 Mengwei Xu @ BUPT 31

• Key metric: hit ratio
• Two techniques to increaseTLB hit ratio: superpage and prefetching
• Typical numbers

- Size: 12 bits – 4,096 entries
- Hit time: 0.5 – 1 clock cycle
- Miss penalty: 10 – 100 clock cycles
- Miss rate: 0.01 – 1% (20–40% for sparse/graph applications)

• If a TLB hit takes 1 clock cycle, a miss takes 30 clock cycles, a memory
read takes 30 clock cycles, and the miss rate is 1%, what’s the average
memory access time?

TLB performance

10/18/24 Mengwei Xu @ BUPT 32

• Superpage: a set of contiguous pages in physical memory that map a
contiguous regions of virtual memory, where the pages are aligned so
that they share the same high-order (superpage) address

- A way to increase theTLB cache hit ratio.
- What is sacrificed?

• Matching superpages only comparing the most significant bits of the
address, ignoring the offset within the superpage.

- For a 2MB superpage, the offset is the lowest 21 bits in virtual address
- For a 1GB superpage, the offset is the lowest 30 bits in virtual address
- For those superpages, x86 skips one or two levels of the page table

• There is only oneTLB entry for all the pages within the same superpage

TLB performance: Superpage

10/18/24 Mengwei Xu @ BUPT 33

TLB performance: Superpage

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

=
Frame 1

Frame 2

Frame 3

..

Physical
Memory

Full address translation
through page table lookup

10/18/24 Mengwei Xu @ BUPT 34

• Prefetching page table entries intoTLB before it’s actually used
• Various ways to prefetch

1. Sequential Prefetching: spatial locality
2. Strided Prefetching: usually for array-based computation
3. Correlated Prefetching: exploiting the history of access patterns
- Software-based vs. Hardware-based

• The effectiveness of CPU prefetching is closely tied to the CPU pipeline
- Think about CPU instruction prefetching

TLB performance: TLB prefetching

10/18/24 Mengwei Xu @ BUPT 35

Memory Performance

10/18/24 Mengwei Xu @ BUPT 36

• Consistency (一致性) is a common issue for each cache: the cache
must be always the same as the original data whenever the entries are
modified.

- Process context switch
- Permission reduction
- TLB shootdown

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 37

• Process Context Switch
- Straightforward way: always flush theTLB when there is a context switch
- Modern way: taggedTLB

TLB Consistency

Virtual
Page #

Page
Frame #

Perm
Process

ID

=
=

=

TLB entry = {
 Process ID,
 virtual page number,
 physical page frame number,
 access permissions
}

10/18/24 Mengwei Xu @ BUPT 38

• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 39

• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..
• There is nothing to be done with permission addition (e.g., heap/stack

extended, read-only to read-write).Why?

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 40

• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..
• There is nothing to be done with permission addition (e.g., heap/stack

extended, read-only to read-write).Why?
• Can we do it in hardware instead of software?

- The processor does not track the address where the mapping came from, so it
cannot tell if a write to memory would affect aTLB entry

- Even if it can, repeatedly checking each memory store to see if it affects anyTLB
entry is unnecessary

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 41

• TLB shootdown (击落): on a multiprocessor, any processor changing
their page table (and thus its TLB) needs to flush other processors’TLBs
as well.

- Multi-thread scenarios
- Typically done through inter-processor interrupts

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 42

• TLB shootdown: on a multiprocessor, any processor changing their page
table (and thus its TLB) needs to flush other processors’TLBs as well.
• The process

- OS first modifies the page table
- It sends aTLB flush request to all processors
- Any processor that finishes its TLB update can resume
- The original processor can resume only when all of the processors have

acknowledged removing the old entry from their TLB.Why?

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 43

• TLB shootdown: on a multiprocessor, any processor changing their page
table (and thus its TLB) needs to flush other processors’TLBs as well.
• The process

- OS first modifies the page table
- It sends aTLB flush request to all processors
- Any processor that finishes its TLB update can resume
- The original processor can resume only when all of the processors have

acknowledged removing the old entry from their TLB.Why?
• High cost of TLB shootdown: linearly increases with core number

- Optimization: batch the shootdown requests

TLB Consistency

10/18/24 Mengwei Xu @ BUPT 44

• If the initial CPU does not wait for the acknowledgement..

TLB Consistency

1. CPU #1 marks page A as read-only

2. CPU #1 proceeds without waiting

3. CPU #1 reads data from page A

4. ..

5. ..

6. ..

7. CPU #1 reads data from page A

1. CPU #2 is handling other interrupts

2. ..

3. ..

4. CPU #2 writes data to page A

5. CPU #2 handles shootdown and

marks page A and read-only

6. ..

Consequence: CPU #1 reads data from read-only page A
for two times, but the returned data are different!

10/18/24 Mengwei Xu @ BUPT 45

• Cache Concepts
• TLB
• Memory Cache

Goals for Today

10/18/24 Mengwei Xu @ BUPT 46

• Fill the speed gap of CPU and DRAM memory

Memory Cache

CPU TLB Cache Memory

10/18/24 Mengwei Xu @ BUPT 47

• Block (块) is the minimal unit of caching
- Often larger than 1 word/byte to exploit the spatial locality
- Shall not be neither too large or too small.Why?
- Modern Intel processors use 64B

• Address fields for cache lookup

Memory Cache

Block
offset

Block Address
Tag Index

Set Select

Data Select

10/18/24 Mengwei Xu @ BUPT 48

• Fully associative (全关联、完全关联): each
address can be stored anywhere in the cache
table
• Direct mapped (直接映射): each address can

be stored in one location in the cache table
• N-way set associative (N路组关联): each

address can be stored in one of N cache sets

§ Tradeoffs: lookup speed and cache hit rate

Cache Lookup

Cache
Tag

Cache
Data

=
=

=

= Cache Miss

Valid

• Compare the cache tag on each cache line
• Example: Block Size=32B blocks

- We need Nx 27-bit comparators

10/18/24 Mengwei Xu @ BUPT 49

Fully Associative

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select (5 bits)

31

=

=
=

=

=

Ex: 0x01

1

2

3

4

N

10/18/24 Mengwei Xu @ BUPT 50

• Compare the cache tag on each cache line
• Example: Block Size=32B blocks

- We need Nx 27-bit comparators

• The drawback: performance degrades with larger cache, because there
are more tags to be compared.

- Solution #1: using larger block, but..

Fully Associative

10/18/24 Mengwei Xu @ BUPT 51

• Map to one specific cache line through a Hash function.
• Verify the address.

Direct Mapped

Address

Cache

Tag Data

= Cache Hit

Hash

Cache Miss

10/18/24 Mengwei Xu @ BUPT 52

• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

Direct Mapped

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 :31

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
Cache Index

510

Hash(x) = addr & 1111100000

10/18/24 Mengwei Xu @ BUPT 53

• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

Direct Mapped

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 :31

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

How those numbers
are determined?

410 5
Cache Index

10/18/24 Mengwei Xu @ BUPT 54

• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

• The drawback: low flexibility
- Thrash (颠簸): frequently using two addresses that map to the same cache entry.

Direct Mapped

10/18/24 Mengwei Xu @ BUPT 55

• N-way Set Associative: N entries per Cache Index
- N direct mapped caches operates in parallel

Set Associative

Address

=

Hash

Cache Miss

=

Cache Miss

Cache Hit

Cache Hit

Tag Data

Tag Data

10/18/24 Mengwei Xu @ BUPT 56

• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

A set

10/18/24 Mengwei Xu @ BUPT 57

• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

How those numbers
are determined?

A set

10/18/24 Mengwei Xu @ BUPT 58

• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

• N-way set associative is a mix of direct mapped and fully associative
- When n = ? It becomes directed mapped
- When n = ? It becomes fully associative

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

10/18/24 Mengwei Xu @ BUPT 59

• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

• N-way set associative is a mix of direct mapped and fully associative
- When n = ? It becomes directed mapped
- When n = ? It becomes fully associative

• Why use the lower bits for index, higher bits for tag?

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

10/18/24 Mengwei Xu @ BUPT 60

• Example: Block 12 placed in 8 block cache??

Where does a Block Get Placed in a Cache?

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
??

Set associative:
??

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
??

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

10/18/24 Mengwei Xu @ BUPT 61

• Example: Block 12 placed in 8 block cache

Where does a Block Get Placed in a Cache?

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

10/18/24 Mengwei Xu @ BUPT 62

• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.

Cache Replacement

10/18/24 Mengwei Xu @ BUPT 63

• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads

Cache Replacement

FIFO
Access a b c d e a b c d e a b c d e

Block 1 a e d c

Block 2 b a e d

Block 3 c b a e

Block 4 d c b

10/18/24 Mengwei Xu @ BUPT 64

• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history

Cache Replacement

LRU
Access a b a c b d a d e d a e b a c

Block 1 a ✓ ✓ ✓ ✓
Block 2 b ✓ ✓
Block 3 c e ✓
Block 4 d ✓ ✓ c

10/18/24 Mengwei Xu @ BUPT 65

• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history
- Least Frequently Used (LFU)

Cache Replacement

10/18/24 Mengwei Xu @ BUPT 66

• Write through: The information is written to both cache and memory
- PRO: read misses cannot result in writes
- CON: Processor is blocked on writes unless writes buffered

• Write back: The information is written only to cache
- Modified cache block is written to main memory only when it is replaced
- Question is block clean or dirty?
- PRO: repeated writes not sent to DRAM; processor is not blocked

on writes
- CON: More complex; read miss may require writeback of dirty data;

need a dirty bit to mark whether a block has been modified

Cache Write Policies

10/18/24 Mengwei Xu @ BUPT 67

• The cache is addressed through virtual or physical address?
- Note there are many levels of cache

Addressed Virtually or Physically?

CPU
2nd-
level
cache

3rd-
level
cache

Main Memory1st-
level
cache

MMU &
TLB

Virtual
address

Cache Index
0431

Cache Tag Byte Select
8

10/18/24 Mengwei Xu @ BUPT 68

• The cache is addressed through virtual or physical address?
- Note there are many levels of cache

• Every address access after MMU is physical
- TheTLB miss cost is very high
- OverlappingTLB and 1st-level cache as they are both in CPU

Addressed Virtually or Physically?

CPU
2nd-
level
cache

3rd-
level
cache

Main Memory1st-
level
cache

MMU &
TLB

Virtual
address

10/18/24 Mengwei Xu @ BUPT 69

• Key idea:
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation

Overlapping TLB and Cache

OffsetVirtual Page #

indextag / page # byte

virtual address

physical address

10/18/24 Mengwei Xu @ BUPT 70

• Key idea:
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation

Overlapping TLB and Cache

TLB 4K Cache

10 2

00
4 bytes

index 1 K

virtual page # disp
20

assoc
lookup

32

Hit/
Miss

Tag Data Hit/
Miss

=page #

10/18/24 Mengwei Xu @ BUPT 71

• Key idea:
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation
- “Virtually indexed, physically tagged” (VIPT)

• Another option: virtually indexed, virtually tagged (VIVT)
- Tags in cache are virtual addresses
- Translation only happens on cache misses
- What’s the problems?

• L1 is mostlyVIPT, L2/L3 are mostly PIPT

Overlapping TLB and Cache

Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

10/18/24 Mengwei Xu @ BUPT 75

Before Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

Process executes a memory
load or store instruction, or
fetches an instruction

The address is first feed to
cache or instruction prefetch
buffer, if it is there, done;

If it is not there, the address is
feed to TLB, to try to find a
page translation entry for it
(note that the address is virtual
address);

If hit in TLB, check for R/W/E permissions.

If approved, take the physical page number,
concatenate it with the page offset, and send the
address to memory bus;

If not approved,
page fault!

If miss in TLB, MMU tries to find page table entry;

If page table entry found, the entry is put to TLB ---
some entry has to be replaced out of TLB, hardware-
decided replacement, random replacement;

If MMU can‘t find
page table entry or
permission not
satisfied, page fault!

10/18/24 Mengwei Xu @ BUPT 76

Handling Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

What kind of fault is it?

R/W/E permission denied: terminate
program and generate core-dump
file, or send a signal to the program

address not in the ranges of addresses that are
allowed to be referenced by the program:
terminate program and generate core-dump files

else, a legitimate page fault
(let's say the virtual page
that is to be faulted in is U)

First find a physical page
for it, say page P

If V has been modified since it is put in
main memory, writeV back to the disk

Change process Q's page table entry for page
V (which holds translations V->P) to invalid;

P already
used?

process Q has
V->P mapping

Y
N

Invalidate corresponding
TLB entry if necessary

Initialize the content of P

U in disk?

Read U from disk (during this time, the
process is blocked, and the CPU scheduler
puts some other process to run on CPU)

Set all bytes
in P to zero

Y

N

After P is initialized, change
the page table entry for U
to be U-->P, and set the
entry to be valid & clean;

After the interrupt processing,
the process will retry the
instruction that was not
finished due to the page fault

10/18/24 Mengwei Xu @ BUPT 77

• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

Page Coloring

Page No. Page Offset

Set Line OffsetTag

01163

2

Consider two consecutive pages used by an application:
• Their virtual set number must be different
• But their physical set number could be the same after translation (when the OS maps them to the

physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

10/18/24 Mengwei Xu @ BUPT 78

• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

Page Coloring

Page No. Page Offset

Set Line OffsetTag

01163

2

Consider two consecutive pages used by an application:
• Their virtual set number must be different
• But their physical set number could be the same after translation (when the OS maps them to the

physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

Solutions
• Coloring the physical pages with the cache sets
• Maps the application pages to as many colors as possible (so less contention)

10/18/24 Mengwei Xu @ BUPT 79

• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

• Page coloring only works for L2/L3 cache but not L1, why?
• Page coloring does not work for full-associative cache, why?

Page Coloring

10/18/241w Mengwei Xu @ BUPT 80

• Working Set (工作集): the memory needed by a program at a period
- Could change at different phases
- Better fit them into fast storage, e.g., first-level cache.

Making Cache Better Utilized

10/18/241w Mengwei Xu @ BUPT 81

• Working Set (工作集): the memory needed by a program at a period
- Could change at different phases
- Better fit them into fast storage, e.g., first-level cache.

• It’s important to design algorithms to adapt the working set to the
memory hierarchy

- Think of sorting a large array
- Think of matrix multiplication (homework)

Making Cache Better Utilized

10/18/241w Mengwei Xu @ BUPT 82

• Zipf model (齐普夫模型): the frequency of visit to the k-th most
popular page ∝ !

"!
, where a is a value between 1 and 2.

- Heavy tail: a substantial portion of references will be to less popular ones

Making Cache Better Utilized

0

0.2

0.4

0.6

0.8

1

0%

5%

10%

15%

20%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Es
tim

at
ed

 H
it

R
at

e

Po
pu

la
ri

ty
 (

%
 a

cc
es

se
s)

Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

10/18/24 Mengwei Xu @ BUPT 83

• L1 cache often has two cache hardware: icache and dcache
- Asynchronous data fetching
- Instruction and data have different patterns, e.g., instruction is rarely written. So

they can better optimized separately
- Tradeoffs between cache performance, hardware complexity, etc..

• L2 and L3 are often one unified cache
- Why?

Split L1 Cache

10/18/24 Mengwei Xu @ BUPT 84

• Cache speeds up OS
- TLB (cache of PTEs)
- Paged virtual memory (memory as cache for disk)
- File systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)

• Cache complicates OS
- E.g.,TLB consistency

Cache Summary

10/18/24 Mengwei Xu @ BUPT 85

Memory Performance

10/18/24 Mengwei Xu @ BUPT 86

Memory Performance

Latency Numbers Every
Programmer Should Know

10/18/24 Mengwei Xu @ BUPT 87

• Making it as fast as possible
- Multithread
- More cache hit
- (optional) single instruction, multiple data

• Scored based on how it performs on our testing hardware

• Details: https://buptos.github.io/homework.html

Easy Lab 2 – Matrix Multiplication

10/18/24 Mengwei Xu @ BUPT 88

• Describe what is TLB shootdown, why we need it.Then search and
discuss at least one optimization onTLB shootdown performance.

Exercise-0

10/18/24 Mengwei Xu @ BUPT 89

Exercise-1

10/18/24 Mengwei Xu @ BUPT 90

Exercise-2

10/18/24 Mengwei Xu @ BUPT 91

Exercise-3

10/18/24 Mengwei Xu @ BUPT 92

Exercise-4

10/18/24 Mengwei Xu @ BUPT 93

Exercise-5

