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• From virtual memory address (虚拟内存地址) to physical memory
address (物理内存地址)

Recap: Address Translation

Processor Translation

Virtual Address
(0x0000)

invalid Throw an
exception

Physical
Memory

valid

Physical Address
(0xffff)

Data (”hello”)



10/18/24 Mengwei Xu @ BUPT 3

• Segmentation with a segment table (分段表)

Recap: Segmented Memory

Segment 1

Processor
Virtual Address

+

> Exception

Physical Address

Segment
(register)

Offset
(register)

RW
R

RW
RW

Base Bound Permission
SegmentTable

Segment 2

Segment 3

Segment 4

Physical
Memory
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• Paging (分页): allocating memory in fixed-sized chunks called page
frames (页框)
• A page table (页表) stores for each process whose entries contain

pointers to the page frames.
- More compact than segment table because it does not need to store ”bound”

• What’s cool: the pages are scattered across physical memory regions
- Yet within a page, the memory access is contiguous
- For instance, a large matrix might span many pages

• Memory allocation becomes very simple: find a page frame.

Recap: Paged Memory
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Recap: Paged Memory

Processor
Virtual Address

Physical Address

Page # Offset
RW
R

R

Frame Permission

PageTable

Frame 1

RW
RW

Frame 2

Frame 3

..

Frame Offset

Physical
Memory
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Recap: x86 Multi-level Paging

Processor

Virtual Address

Physical Address

index 1
(10 bits)

Offset
(12 bits)

Page
Directory

Frame 1

32 bits

Frame 2

Frame 3

..

..
4K
4K
4K

Frame
(20 bits)

Offset
(12 bits)

Physical
Memory

index 2
(10 bits)

Page
Table
32 bits

Page directory
number (页目
录号)

Page table
number (页表号)

Page offset
(页内偏移)

4K sizeCR3
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• Each page table entry (PTE,页表项) is 32-bits long.

Recap: x86 Multi-level Paging

P
R
/
W

U
/
S

P
W
Y

P
C
D

AD
P
A
T

GAvail
(9-11)Page Frame Base Address (12-31)

01234567891131

Available for system programmer’s use
Global page
Page Table Attribute Index
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
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• Memory management unit (MMU,分页内存管理单元): the hardware
that actually does the translation

- Usually located in CPU

Recap: x86 Multi-level Paging

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

32 bits
32 bits
32 bits
32 bits

R

WOS
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• Pros:
- Only need to allocate as many page table entries as we need for application

q In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing

q Share at segment or page level (need additional reference counting)
• Cons:

- One pointer per page (typically 4K – 16K pages today)
- Page tables need to be contiguous

q However, previous example keeps tables to exactly one page in size
- Two (or more, if >2 levels) lookups per reference

q Seems very expensive!

Recap: Multi-level Paging Summary
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• What about a tree of tables?
- Lowest level page table Þ memory still allocated with bitmap
- Higher levels often segmented

• Could have any number of levels. Example (top segment):

Segments + Paging

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error
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• Intel x86 and Linux
- 8086 era: segmentation and paging are both used
- 80386 era: the segmentation is not really used

qThe processor provides 4 modes: none; paging only; segmentation only; both.
qThe CS is always set to 0 and the limit is 2^32.

- x86_64 era: segmentation is considered as a legacy and not used in most OSes

• Now, everyone uses paging, few make any real use of segmentation.

Segmentation vs. Paging

https://softwareengineering.stackexchange.com/questions/100047/why-not-segmentation
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• How to implement an efficient fork()?
- Do not copy all contents immediately, but mark the page/segment tables of both

child and parent processes as “read-only”
- When a write (from either child or parent) happens, it traps into kernel through

page fault, and a private page is copied.

• A fork() followed immediately by a exec(), how many pages are really
copied?

Copy-on-Write (COW)
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• Cache Concepts
• TLB
• Memory Cache

Goals for Today
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• Cache Concepts
• TLB
• Memory Cache

Goals for Today
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• Cache (缓存): a repository for copies that can be accessed more 
quickly than the original

- One of the most widely adopted concept in computer systems: architecture, OS,
distributed systems, network routes, etc..

- Make frequent access fast!
- Only works with high “cache hit”

• Average AccessTime =
(Hit Rate x HitTime) + (Miss Rate x MissTime)

Cache Concept
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• Processing is often faster than I/O access

Why Cache?

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
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• Temporal locality (时间局部性): If at one point a particular memory 
location is referenced, then it is likely that the same location will be 
referenced again in the near future.

- To leverage: keep recently accessed data items closer to processor
• Spatial locality (空间局部性): if a particular storage location is 

referenced at a particular time, then it is likely that nearby memory 
locations will be referenced in the near future.

- Move contiguous blocks to the upper levels 

Locality: the Key to Cache Success
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• Speed, Size, and Cost: take advantage of each level

Memory Hierarchy

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s  
   (10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary
Storage
(Tape)

10,000,000,000s  
   (10s sec)

Ts-Ps



10/18/24 Mengwei Xu @ BUPT 19

• Speed, Size, and Cost: take advantage of each level
• Direct use of caching techniques

- TLB (cache of PTEs)
- Cache (cache of main memory, many levels)
- Paged virtual memory (memory as cache for disk)
- File systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)

Memory Hierarchy

CPU TLB Cache Memory

In this course:



10/18/24 Mengwei Xu @ BUPT 20

• Cache Concepts
• TLB
• Memory Cache

Goals for Today
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• It’s too slow! Each memory access takes at least 2 extra memory access
- Memory speed is often slower than CPU
- With more levels of translation..

Address Translation Problem
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• Translation Lookaside Buffers (TLB,转换检测缓冲区): a special cache
within MMU that accelerates address translation

TLB as a Cache

……
add r1,r2
mult r1, 2
……

Virtual Address

……
0x01234567
0x89abcdef
……

Physical Address

Translation

• The time and spatial
locality.Who are they?

• Memory mapping is page-
aligned.
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• ATLB lookup goes through eachTLB entry
- TLB hits if any entry matches so the physical page is fetched directly
- TLB miss if none them matches. Do a full translation and use the physical

address to replace an old entry inTLB.

TLB entry = {
 virtual page number,
 physical page frame number,
 access permissions
}

TLB Lookup
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• ATLB lookup goes through eachTLB entry

TLB Lookup

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

= Full address translation
through page table lookup

Frame 1

Frame 2

Frame 3

..

Physical
Memory
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• ATLB lookup goes through eachTLB entry

TLB Lookup
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• ATLB lookup goes through eachTLB entry
• TLBs are often set-associative to reduce the comparison

- More in the cache courses

TLB Lookup
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• ATLB lookup goes through eachTLB entry
• TLBs are often set-associative to reduce the comparison
• Address translation cost withTLB

- HighTLB hit ratio is critical to translation performance

TLB Lookup

Cost(address translation) = Cost(TLB Lookup) +
    Cost(full translation) x P(miss)
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• Sources
- Page not accessed before
- Page evicted due to limitedTLB size
- Page mapping conflict due to association
- Other processes update the page table

TLB Miss
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• (Mostly) Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk 

multiple levels)
q If PTE valid, hardware fills TLB and processor never knows
q If PTE marked as invalid, causes Page Fault, after which kernel decides what 

to do afterwards

• Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE

q If PTE valid, fills TLB and returns from fault
q If PTE marked as invalid, internally calls Page Fault handler

TLB Miss
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• Key metric: hit ratio
• Two techniques to increaseTLB hit ratio: superpage and prefetching
• Typical numbers[1]

- Size: 12 bits – 4,096 entries
- Hit time: 0.5 – 1 clock cycle
- Miss penalty: 10 – 100 clock cycles
- Miss rate: 0.01 – 1% (20–40% for sparse/graph applications)

TLB performance

Cost(address translation) = Cost(TLB Lookup) +
    Cost(full translation) x P(miss)

[1] David A. Patterson; John L. Hennessy (2009). Computer Organization And Design. Hardware/Software interface. 
4th edition. Burlington, MA 01803, USA: Morgan Kaufmann Publishers. p. 503.
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• Key metric: hit ratio
• Two techniques to increaseTLB hit ratio: superpage and prefetching
• Typical numbers

- Size: 12 bits – 4,096 entries
- Hit time: 0.5 – 1 clock cycle
- Miss penalty: 10 – 100 clock cycles
- Miss rate: 0.01 – 1% (20–40% for sparse/graph applications)

• If a TLB hit takes 1 clock cycle, a miss takes 30 clock cycles, a memory 
read takes 30 clock cycles, and the miss rate is 1%, what’s the average
memory access time?

TLB performance
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• Superpage: a set of contiguous pages in physical memory that map a
contiguous regions of virtual memory, where the pages are aligned so
that they share the same high-order (superpage) address

- A way to increase theTLB cache hit ratio.
- What is sacrificed?

• Matching superpages only comparing the most significant bits of the
address, ignoring the offset within the superpage.

- For a 2MB superpage, the offset is the lowest 21 bits in virtual address
- For a 1GB superpage, the offset is the lowest 30 bits in virtual address
- For those superpages, x86 skips one or two levels of the page table

• There is only oneTLB entry for all the pages within the same superpage

TLB performance: Superpage
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TLB performance: Superpage

Virtual Address

Page # Offset

TLB
Virtual
Page #

Page
Frame #

Perm

=
=

=

Physical Address

Frame # Offset

=
Frame 1

Frame 2

Frame 3

..

Physical
Memory

Full address translation
through page table lookup
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• Prefetching page table entries intoTLB before it’s actually used
• Various ways to prefetch

1. Sequential Prefetching: spatial locality
2. Strided Prefetching: usually for array-based computation
3. Correlated Prefetching: exploiting the history of access patterns
- Software-based vs. Hardware-based

• The effectiveness of CPU prefetching is closely tied to the CPU pipeline
- Think about CPU instruction prefetching

TLB performance: TLB prefetching
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Memory Performance
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• Consistency (一致性) is a common issue for each cache: the cache
must be always the same as the original data whenever the entries are
modified.

- Process context switch
- Permission reduction
- TLB shootdown

TLB Consistency
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• Process Context Switch
- Straightforward way: always flush theTLB when there is a context switch
- Modern way: taggedTLB

TLB Consistency

Virtual
Page #

Page
Frame #

Perm
Process

ID

=
=

=

TLB entry = {
 Process ID,
 virtual page number,
 physical page frame number,
 access permissions
}
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• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..

TLB Consistency
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• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..
• There is nothing to be done with permission addition (e.g., heap/stack

extended, read-only to read-write).Why?

TLB Consistency
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• Permission reduction: when a mapping is discarded or the access
permission reduces (from read-write to read-only).

- Early computers discard the wholeTLB; modern ones support the removal of
individual TLB entries

- If the pages are shared by processes..
• There is nothing to be done with permission addition (e.g., heap/stack

extended, read-only to read-write).Why?
• Can we do it in hardware instead of software?

- The processor does not track the address where the mapping came from, so it
cannot tell if a write to memory would affect aTLB entry

- Even if it can, repeatedly checking each memory store to see if it affects anyTLB
entry is unnecessary

TLB Consistency
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• TLB shootdown (击落): on a multiprocessor, any processor changing
their page table (and thus its TLB) needs to flush other processors’TLBs
as well.

- Multi-thread scenarios
- Typically done through inter-processor interrupts

TLB Consistency
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• TLB shootdown: on a multiprocessor, any processor changing their page
table (and thus its TLB) needs to flush other processors’TLBs as well.
• The process

- OS first modifies the page table
- It sends aTLB flush request to all processors
- Any processor that finishes its TLB update can resume
- The original processor can resume only when all of the processors have

acknowledged removing the old entry from their TLB.Why?

TLB Consistency
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• TLB shootdown: on a multiprocessor, any processor changing their page
table (and thus its TLB) needs to flush other processors’TLBs as well.
• The process

- OS first modifies the page table
- It sends aTLB flush request to all processors
- Any processor that finishes its TLB update can resume
- The original processor can resume only when all of the processors have

acknowledged removing the old entry from their TLB.Why?
• High cost of TLB shootdown: linearly increases with core number

- Optimization: batch the shootdown requests

TLB Consistency
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• If the initial CPU does not wait for the acknowledgement..

TLB Consistency

1. CPU #1 marks page A as read-only

2. CPU #1 proceeds without waiting

3. CPU #1 reads data from page A

4. ..

5. ..

6. ..

7. CPU #1 reads data from page A

1. CPU #2 is handling other interrupts

2. ..

3. ..

4. CPU #2 writes data to page A

5. CPU #2 handles shootdown and

marks page A and read-only

6. ..

Consequence: CPU #1 reads data from read-only page A
for two times, but the returned data are different!
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• Cache Concepts
• TLB
• Memory Cache

Goals for Today
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• Fill the speed gap of CPU and DRAM memory

Memory Cache

CPU TLB Cache Memory
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• Block (块) is the minimal unit of caching
- Often larger than 1 word/byte to exploit the spatial locality
- Shall not be neither too large or too small.Why?
- Modern Intel processors use 64B

• Address fields for cache lookup

Memory Cache

Block
offset

Block Address
Tag Index

Set Select

Data Select
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• Fully associative (全关联、完全关联): each
address can be stored anywhere in the cache
table
• Direct mapped (直接映射): each address can

be stored in one location in the cache table
• N-way set associative (N路组关联): each

address can be stored in one of N cache sets

§ Tradeoffs: lookup speed and cache hit rate

Cache Lookup

Cache
Tag

Cache
Data

=
=

=

= Cache Miss

Valid



• Compare the cache tag on each cache line
• Example: Block Size=32B blocks

- We need Nx 27-bit comparators
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Fully Associative

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select (5 bits)

31

=

=
=

=

=

Ex: 0x01

1

2

3

4

N
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• Compare the cache tag on each cache line
• Example: Block Size=32B blocks

- We need Nx 27-bit comparators

• The drawback: performance degrades with larger cache, because there
are more tags to be compared.

- Solution #1: using larger block, but..

Fully Associative
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• Map to one specific cache line through a Hash function.
• Verify the address.

Direct Mapped

Address

Cache

Tag Data

= Cache Hit

Hash

Cache Miss
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• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

Direct Mapped

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 :31

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
Cache Index

510

Hash(x) = addr & 1111100000
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• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

Direct Mapped

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 :31

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

How those numbers
are determined?

410 5
Cache Index
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• Example: 1 KB Direct Mapped Cache with 32B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

• The drawback: low flexibility
- Thrash (颠簸): frequently using two addresses that map to the same cache entry.

Direct Mapped
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• N-way Set Associative: N entries per Cache Index
- N direct mapped caches operates in parallel

Set Associative

Address

=

Hash

Cache Miss

=

Cache Miss

Cache Hit

Cache Hit

Tag Data

Tag Data
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• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

A set
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• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

Set Associative

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

How those numbers
are determined?

A set
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• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

• N-way set associative is a mix of direct mapped and fully associative
- When n = ? It becomes directed mapped
- When n = ? It becomes fully associative

Set Associative

Cache Index
0431

Cache Tag Byte Select
8
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• Example: two-way set associative cache
- Cache Index selects a “set” from the cache
- All tags in a set are compared to input in parallel
- Data is selected based on the tag result

• N-way set associative is a mix of direct mapped and fully associative
- When n = ? It becomes directed mapped
- When n = ? It becomes fully associative

• Why use the lower bits for index, higher bits for tag?

Set Associative

Cache Index
0431

Cache Tag Byte Select
8



10/18/24 Mengwei Xu @ BUPT 60

• Example: Block 12 placed in 8 block cache??

Where does a Block Get Placed in a Cache?

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
??

Set associative:
??

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
??

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.
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• Example: Block 12 placed in 8 block cache

Where does a Block Get Placed in a Cache?

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.
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• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.

Cache Replacement
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• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads

Cache Replacement

FIFO
Access a b c d e a b c d e a b c d e

Block 1 a e d c

Block 2 b a e d

Block 3 c b a e

Block 4 d c b
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• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history

Cache Replacement

LRU
Access a b a c b d a d e d a e b a c

Block 1 a ✓ ✓ ✓ ✓
Block 2 b ✓ ✓
Block 3 c e ✓
Block 4 d ✓ ✓ c
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• Direct mapped: only one possibility
• Set or fully associative

- Random: sometimes simple is good; no extra overhead.
- First-In-First-Out (FIFO): could be the worst in certain workloads
- Least Recently Used (LRU): predicting future based on history
- Least Frequently Used (LFU)

Cache Replacement
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• Write through: The information is written to both cache and memory
- PRO: read misses cannot result in writes
- CON: Processor is blocked on writes unless writes buffered

• Write back: The information is written only to cache
- Modified cache block is written to main memory only when it is replaced
- Question is block clean or dirty?
- PRO: repeated writes not sent to DRAM; processor is not blocked

on writes
- CON: More complex; read miss may require writeback of dirty data;

need a dirty bit to mark whether a block has been modified

Cache Write Policies
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• The cache is addressed through virtual or physical address?
- Note there are many levels of cache

Addressed Virtually or Physically?

CPU
2nd-
level
cache

3rd-
level
cache

Main Memory1st-
level
cache

MMU & 
TLB

Virtual
address

Cache Index
0431

Cache Tag Byte Select
8
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• The cache is addressed through virtual or physical address?
- Note there are many levels of cache

• Every address access after MMU is physical
- TheTLB miss cost is very high
- OverlappingTLB and 1st-level cache as they are both in CPU

Addressed Virtually or Physically?

CPU
2nd-
level
cache

3rd-
level
cache

Main Memory1st-
level
cache

MMU & 
TLB

Virtual
address
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• Key idea: 
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation  

Overlapping TLB and Cache

OffsetVirtual Page #

indextag / page # byte

virtual address 

physical address 
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• Key idea: 
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation  

Overlapping TLB and Cache

TLB 4K Cache

10 2

00
4 bytes

index 1 K

virtual page # disp
20

assoc
lookup

32

Hit/
Miss

Tag Data Hit/
Miss

=page #
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• Key idea: 
- Offset in virtual address exactly covers the “cache index” and “byte select”
- Thus can select the cached byte(s) in parallel to perform address translation
- “Virtually indexed, physically tagged” (VIPT)

• Another option: virtually indexed, virtually tagged (VIVT)
- Tags in cache are virtual addresses
- Translation only happens on cache misses
- What’s the problems?

• L1 is mostlyVIPT, L2/L3 are mostly PIPT

Overlapping TLB and Cache



Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:



Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:



Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Before Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

Process executes a memory 
load or store instruction, or 
fetches an instruction

The address is first feed to 
cache or instruction prefetch 
buffer, if it is there, done; 

If it is not there, the address is 
feed to TLB, to try to find a 
page translation entry for it 
(note that the address is virtual 
address);

If hit in TLB, check for R/W/E permissions.

If approved, take the physical page number, 
concatenate it with the page offset, and send the 
address to memory bus;

If not approved, 
page fault!

If miss in TLB, MMU tries to find page table entry;

If page table entry found, the entry is put to TLB ---
some entry has to be replaced out of TLB, hardware-
decided replacement, random replacement;

If MMU can‘t find 
page table entry or
permission not
satisfied, page fault!
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Handling Page Fault (done by hardware)

Detailed Page Fault Process

ref: https://pages.cs.wisc.edu/~cao/cs537/lecture17.txt

What kind of fault is it?

R/W/E permission denied: terminate 
program and generate core-dump 
file, or send a signal to the program 

address not in the ranges of addresses that are 
allowed to be referenced by the program: 
terminate program and generate core-dump files

else, a legitimate page fault
(let's say the virtual page 
that is to be faulted in is U)

First find a physical page 
for it, say page P

If V has been modified since it is put in
main memory, writeV back to the disk

Change process Q's page table entry for page 
V (which holds translations V->P) to invalid;

P already
used?

process Q has
V->P mapping

Y
N

Invalidate corresponding 
TLB entry if necessary

Initialize the content of P

U in disk?

Read U from disk (during this time, the 
process is blocked, and the CPU scheduler 
puts some other process to run on CPU)

Set all bytes
in P to zero

Y

N

After P is initialized, change 
the page table entry for U 
to be U-->P, and set the 
entry to be valid & clean;

After the interrupt processing,
the process will retry the
instruction that was not
finished due to the page fault
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• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

Page Coloring

Page No. Page Offset

Set Line OffsetTag

01163

2

Consider two consecutive pages used by an application:
• Their virtual set number must be different
• But their physical set number could be the same after translation (when the OS maps them to the

physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.
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• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

Page Coloring

Page No. Page Offset

Set Line OffsetTag

01163

2

Consider two consecutive pages used by an application:
• Their virtual set number must be different
• But their physical set number could be the same after translation (when the OS maps them to the

physical pages whose page numbers have the same last 2 bits). In such a case, two addresses with
the same offset within these two pages will in contention for the cache set.

Solutions
• Coloring the physical pages with the cache sets
• Maps the application pages to as many colors as possible (so less contention)
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• Page Coloring or Cache Coloring (着色) technique helps reduce the
cache miss in an app

• Page coloring only works for L2/L3 cache but not L1, why?
• Page coloring does not work for full-associative cache, why?

Page Coloring
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• Working Set (工作集): the memory needed by a program at a period
- Could change at different phases
- Better fit them into fast storage, e.g., first-level cache.

Making Cache Better Utilized
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• Working Set (工作集): the memory needed by a program at a period
- Could change at different phases
- Better fit them into fast storage, e.g., first-level cache.

• It’s important to design algorithms to adapt the working set to the
memory hierarchy

- Think of sorting a large array
- Think of matrix multiplication (homework)

Making Cache Better Utilized
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• Zipf model (齐普夫模型): the frequency of visit to the k-th most
popular page ∝ !

"!
, where a is a value between 1 and 2.

- Heavy tail: a substantial portion of references will be to less popular ones

Making Cache Better Utilized
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• L1 cache often has two cache hardware: icache and dcache
- Asynchronous data fetching
- Instruction and data have different patterns, e.g., instruction is rarely written. So

they can better optimized separately
- Tradeoffs between cache performance, hardware complexity, etc..

• L2 and L3 are often one unified cache
- Why?

Split L1 Cache
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• Cache speeds up OS
- TLB (cache of PTEs)
- Paged virtual memory (memory as cache for disk)
- File systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)

• Cache complicates OS
- E.g.,TLB consistency

Cache Summary
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Memory Performance
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Memory Performance

Latency Numbers Every 
Programmer Should Know
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• Making it as fast as possible
- Multithread
- More cache hit
- (optional) single instruction, multiple data

• Scored based on how it performs on our testing hardware

• Details: https://buptos.github.io/homework.html

Easy Lab 2 – Matrix Multiplication
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• Describe what is TLB shootdown, why we need it.Then search and
discuss at least one optimization onTLB shootdown performance.

Exercise-0
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Exercise-1
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Exercise-2
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Exercise-3
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Exercise-4
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Exercise-5


